Differential Expression of Type III Effector BteA Protein Due to IS481 Insertion in Bordetella pertussis

نویسندگان

  • Hyun-Ja Han
  • Asaomi Kuwae
  • Akio Abe
  • Yoshichika Arakawa
  • Kazunari Kamachi
چکیده

BACKGROUND Bordetella pertussis is the primary etiologic agent of the disease pertussis. Universal immunization programs have contributed to a significant reduction in morbidity and mortality of pertussis; however, incidence of the disease, especially in adolescents and adults, has increased in several countries despite high vaccination coverage. During the last three decades, strains of Bordetella pertussis in circulation have shifted from the vaccine-type to the nonvaccine-type in many countries. A comparative proteomic analysis of the strains was performed to identify protein(s) involved in the type shift. METHODOLOGY/PRINCIPAL FINDING Proteomic analysis identified one differentially expressed protein in the B. pertussis strains: the type III cytotoxic effector protein BteA, which is responsible for host cell death in Bordetella bronchiseptica infections. Immunoblot analysis confirmed the prominent expression of BteA protein in the nonvaccine-type strains but not in the vaccine-type strains. Sequence analysis of the vaccine-type strains revealed an IS481 insertion in the 5' untranslated region of bteA, -136 bp upstream of the bteA start codon. A high level of bteA transcripts from the IS481 promoter was detected in the vaccine-type strains, indicating that the transcript might be an untranslatable form. Furthermore, BteA mutant studies demonstrated that BteA expression in the vaccine-type strains is down-regulated by the IS481 insertion. CONCLUSION/SIGNIFICANCE The cytotoxic effector BteA protein is expressed at higher levels in B. pertussis nonvaccine-type strains than in vaccine-type strains. This type-dependent expression is due to an insertion of IS481 in B. pertussis clinical strains, suggesting that augmented expression of BteA protein might play a key role in the type shift of B. pertussis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Bordetella type III secretion system effector BteA contains a conserved N-terminal motif that guides bacterial virulence factors to lipid rafts

The Bordetella type III secretion system (T3SS) effector protein BteA is necessary and sufficient for rapid cytotoxicity in a wide range of mammalian cells. We show that BteA is highly conserved and functionally interchangeable between Bordetella bronchiseptica, Bordetella pertussis and Bordetella parapertussis. The identification of BteA sequences required for cytotoxicity allowed the construc...

متن کامل

Characterization of the N-Terminal Domain of BteA: A Bordetella Type III Secreted Cytotoxic Effector

BteA, a 69-kDa cytotoxic protein, is a type III secretion system (T3SS) effector in the classical Bordetella, the etiological agents of pertussis and related mammalian respiratory diseases. Currently there is limited information regarding the structure of BteA or its subdomains, and no insight as to the identity of its eukaryotic partners(s) and their modes of interaction with BteA. The mechani...

متن کامل

BtcA, A Class IA Type III Chaperone, Interacts with the BteA N-Terminal Domain through a Globular/Non-Globular Mechanism

Bordetella pertussis, the etiological agent of "whooping cough" disease, utilizes the type III secretion system (T3SS) to deliver a 69 kDa cytotoxic effector protein, BteA, directly into the host cells. As with other T3SS effectors, prior to its secretion BteA binds BtcA, a 13.9 kDa protein predicted to act as a T3SS class IA chaperone. While this interaction had been characterized for such eff...

متن کامل

Differential regulation of type III secretion and virulence genes in Bordetella pertussis and Bordetella bronchiseptica by a secreted anti-σ factor.

The BvgAS phosphorelay regulates ∼10% of the annotated genomes of Bordetella pertussis and Bordetella bronchiseptica and controls their infectious cycles. The hierarchical organization of the regulatory network allows the integration of contextual signals to control all or specific subsets of BvgAS-regulated genes. Here, we characterize a regulatory node involving a type III secretion system (T...

متن کامل

Prevalence and sequence variants of IS481 in Bordetella bronchiseptica: implications for IS481-based detection of Bordetella pertussis.

We report the prevalence in Bordetella bronchiseptica of IS481, a frequent target for diagnosis of Bordetella pertussis, as approximately 5%. However, PCR amplicons of the predicted size were detectable in 78% of IS481-negative strains. Our results suggest that PCR targeting IS481 may not be sufficiently specific for reliable identification of B. pertussis.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011